Logarithmic Convexity and Inequalities for the Gamma Function

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal inequalities for the power, harmonic and logarithmic means

For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

Monotonicity and Convexity for the Gamma Function

Let a and b be given real numbers with 0 ≤ a < b < a + 1. Then the function θa,b(x) = [Γ(x + b)/Γ(x + a)]1/(b−a) − x is strictly convex and decreasing on (−a,∞) with θa,b(∞) = a+b−1 2 and θa,b(−a) = a, where Γ denotes the Euler’s gamma function.

متن کامل

Inequalities for the Gamma Function

We prove the following two theorems: (i) Let Mr(a, b) be the rth power mean of a and b. The inequality Mr(Γ(x), Γ(1/x)) ≥ 1 holds for all x ∈ (0,∞) if and only if r ≥ 1/C − π2/(6C2), where C denotes Euler’s constant. This refines results established by W. Gautschi (1974) and the author (1997). (ii) The inequalities xα(x−1)−C < Γ(x) < xβ(x−1)−C (∗) are valid for all x ∈ (0, 1) if and only if α ≤...

متن کامل

Inequalities for Gamma Function Ratios

Write R(x, y) = Γ(x + y) Γ(x). Inequalities for this ratio have interesting applications, and have been considered by a number of writers over a long period. In a Monthly article [7], Wendel showed that x(x + y) y−1 ≤ R(x, y) ≤ x y for 0 ≤ y ≤ 1. (1) Wendel's method was an ingenious application of Hölder's inequality to the integral definition of the gamma function. Note that both inequalities ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1996

ISSN: 0022-247X

DOI: 10.1006/jmaa.1996.0385